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Concerning the Theory of Chirality Functions
VII. The Concept of Qualitative Supercompleteness*™**
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Glossary of the most important symbols’

8 ensemble operator which is an element of the group algebra of the S

® group of the symmetry operations of the skeleton

G, group of the covering operations of the fictively extended skeleton

g number of enantiomeric pairs of molecules with n different ligands and a skeleton
of n ligand sites

h number of enantiomeric pairs of molecules with N different ligands and a fictively
extended skeleton of N ligand sites

% TU-half order of the partition diagrams v\’ with f,,, =1

(g half order of the partition diagrams §%*

L vector of the symbols /; of the N ligands attached to the proper or to the fictive
ligand sites

L. vector of the symbols /; of the n ligands attached to the proper ligand sites

L, vector of the symbols /; of the m ligands attached to the fictive ligand sites

L, vector of the symbols /; of » ligands attached to v proper ligand sites, »<n

I symbol of the ligand attached to the ith ligand site

M see Eq. (B21)

m number of fictive ligand sites or additional ligand sorts

m,, number of times a v-ligands function induces A

N number of ligand sites of the fictively extended skeleton or total number of ligand
sorts

n number of proper ligand sites or number of ligand sorts of a molecule with

pairwise different ligands

* Dedicated to Prof. O. E. Polansky on the occasion of his 60th birthday.

**  Part VI: Langer, E., Lehner, H.: Monatsh. Chem. 110, 1003 (1979).

***  Present address: Department of Organic Chemistry, University of Groningen, Zernikelaan,
Groningen, Netherlands.

' For symbols designating functions the following holds: a function symbol without = or “*
designates a function depending formally on N, explicitly on n or v ligands; a function symbol with
designates a function depending formally on n, explicitly on n or » ligands; a function symbol with «*
designates a function depending formally and explicitly on v ligands.
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G. Derflinger and H. Keller

dimension of I‘ﬁ,') or F%‘}') resp.

permutation operator induced by the permutation s in the function space,
element of &(0), ©,,(0), ©,(0), ©5(0) o1 &, (0) resp.

length of the first row of vy or ¥ resp.

sum of the lengths of the first i rows of »¥

0y =MAX; 05

projection and shift operators of TP or T resp.

character projectors onto 'Y of &,, or S,(0) resp.

character projectors onto r'20f &, or &, (0) resp.

character projectors onto T of Gy or ©4(0) resp.

character projector onto A of &,(0)

projection operators onto I, of 1= & x&,, or &(0)X &,,(0) resp.

projection operators onto I', of @ or &(0) resp.

dimension of A

index of an irreducible representation ' of the &,

index of an irreducible representation T of the ,, containing I,

group of the ligand permutations which correspond to symmetry operations of
the skeleton

subgroup of & the elements of which correspond to proper rotations of the
skeleton

coset of &, in & the elements of which correspond to improper rotations of the
skeleton

symmetric group of the permutations of the m ligands attached to the fictive
ligand sites

symmetric group of the permutations of the n ligands attached to the proper
ligand sites

symmetric group of the permutations of all N ligands

symmetric group of the permutations of » ligands attached to proper ligand sites,
v=n

symmetric groups the elements of which are permutation operators 0(d)

see Eq. (B13)

see Eq. (B4)

multiplicity of T$” in T® ® T, equal to the multiplicity of 'Y xI'% in Ty
group of the ligand permutations which correspond to covering operations of the
fictively extended skeleton

subgroup of U the elements of which correspond to proper rotations of the
fictively extended skeleton

coset of 11, in U the elements of which correspond to improper rotations of the
fictively extended skeleton

index of an irreducible representation ' of the &,,

index of an irreducible representation 'Y of the ©y

index of an irreducible representation T of the &, containing T,

index of the largest diagram y&}’ € §Rror € bY resp.

index of the smallest diagram y3’ € $7 or 88 b resp.

multiplicity of T, in T’

Young operator (if i = j) or Young unit of AS” of &, ()

Young operator (if i = j) or Young unit of F}Q") of &Sp(0)

multiplicity of T, in T

linear combination coefficient, see Eq. (48), (B41)

irreducible representation of &,, or &,,(0) resp., &,, or ©,,(0) resp., or &y or
Sn(0), resp.

o-chirality representation

chirality representation



Theory of Chirality Functions 3

yi,’i), ¥,y partition diagrams corresponding to T, T or T resp.

¥ partition diagram corresponding to an assortment of N ligands

AL irreducible representation of &, or &,(0) resp.

5 partition diagram corresponding to AU, gotfrom v%’ by removing the first row
AP pth parameter of the ligand J; in a set up to the component §(L,) of ¥(L.)

v number of ligands on which the set up &™(L) depends (=order of interaction),

equal to the number of boxes of §, v<n

p length of the ith row of y%’
o subscript which distinguishes between different parameter sets for a given w,
p=1,...,5,
o permutation transforming a Young tableau f into a Young tableau i
(W) © (Le)s product of the Vandermonde determinants of the Young tableau k multipled by
5%) (L,) the product of all parameters of L,
&(L), d(Lo) function describing physical properties of a molecule
x(L), ¥(Lo) chirality function of a molecule derived by a “Naherungsverfahren”
™AL, wth component of y (L) or ¥(L,) resp.
KAL)
U,y L) see Eq. (B19)
(L), o(L,) set up to the chirality function x(L) or y(L.) resp.
0™(L), v-ligands function, set up to y™’(L) or ¥*(L.)
&ALy,
&ML,
6L, A% -component of @™(L), 6"™(L,) or &™(L,) resp.
B™(L,),
&™(L,) _
G(Ly), set up of the uth component, u=1, ..., x,, toa x*(L) or {™(L,) resp., see Egq.
Su(L) (B16)

Within the scope of the theory of chirality functions, qualitatively complete
chirality functions are subject to restrictions concerning both generality and
applicability. In contrast thereto, the concept of qualitative supercomplete-
ness results in less restrictive requirements for chirality functions.
Consequently, the applicability of qualitatively supercomplete chirality
functions is unlimited with respect to the number of ligand kinds. Given this
concept, a group theoretical treatment is performed supplying the formal
conditions of qualitative supercompleteness. Subsequently a construction rule
for qualitiatively supercomplete chirality functions is presented, which is
elaborated in detail in the appendix. On combining physical considerations
with the requirement of qualitative supercompleteness the resulting chirality
functions appear to include all the possible interactions within and/or between
ligands and skeleton. From both a mathematical and a physical point of view
these chirality functions should be adequate for describing the chiroptical
properties of molecules belonging to a given skeletal class. Nevertheless, all
the other critical objections to the theory of chirality functions remain.

Key words: Optical activity —Mixtures of non-isomers — Ligand-skeleton
interactions.
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1. Introduction and Purpose

The theory of chirality functions represents an algebraic approach to the
comprehension of the chirality phenomenon [1-7]. Within this concept a mole-
cule is assumed to consist of an achiral skeleton of given symmetry and ligands
attached to the skeletal sites. Based on this model, pseudoskalar properties of the
molecule are presumed to be describable by a function of ligand specific
parameters, named the chirality function.

Taking into account the elementary requirements of chirality a group-theoretical
treatment provides the conditions which a chirality function has to fulfill: its
numerical value must be invariant under permutations of ligands corresponding to
proper rotations of the molecule and must change sign under permutations
corresponding to improper rotations (see also [8]). Given the algebraic framework
of symmetry and transformation behaviour chirality functions are constructed by
means of “Niherungsverfahren” implying “Néherungsansitze””. Two examples
of “Niherungsverfahren’ are outlined in [3, 4].

Nevertheless, it is by no means ensured that a chirality function fulfilling all the
above mentioned requirements gives a correct description of chirality obser-
vations [9, 10]*. One discrepancy concerning the general validity and applicability
of chirality functions according to [3] was removed by requiring “qualitative
completeness” [4]. With respect to this point, a chirality function must not vanish
for non-racemic mixtures of isomers whatever the nature of the ligands may be.
Hence systematical non-racemic zero points are eliminated for mixtures of
isomers.

As shown in a preceding article [10], quite a few systematical zero points for
non-racemic mixtures have remained: dropping the limitation to isomers and
allowing for arbitrary non-racemic mixtures the chirality functions according to
[4] appear to vanish in certain cases independently of the nature of the ligands.

Consequently, to ensure generality and enable a compelling application of
chirality functions at least in principle a more general requirement substituting the
one of qualitative completeness (C-requirement) has to be raised. It will be called
requirement of “qualitative supercompleteness” (SC-requirement)4. Clearly
qualitative supercompleteness does not only substitute for but also include
qualitative completeness. .

The terms “Niherungsverfahren” and “Niherungsansatz” are always used in the sense of [3, 4].
3 Asto E. Ruch’s reply (Theoret. Chim. Acta (Berl.) 49, 106 (1979)) to our papers [9, 10], we feel
that the discussion should not be continued on this basis, and we leave it to the readers to draw their
own conclusions.
4 C represents an abbreviation for “qualitatively complete” whereas SC means “qualitatively
supercomplete”. The term “‘supercomplete” should not be confounded with “overcomplete” which
usually means “more than complete”, i.e. “too much’ because *complete” is sufficient. We have
decided rather to call the requirement introduced here “qualitative supercompleteness” in order to
emphasize that it is more general than the requirement of ““qualitative completeness”.
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In the following the concept of qualitative supercompleteness is developed. First
of all the concept of “quasi-isomers” or “fictive isomers™ is introduced. The
underlying mathematics within the framework of the symmetric group are formu-
lated. Two construction procedures of SC-chirality functions are discussed and
some examples are given. Furthermore, a comparison with the principle of
many-body interactions, which is based on physical considerations, will reveal the
relevance of the concept of qualitative supercompleteness.

2. Qualitative Supercompleteness and Mixtures of Non-Isomers

The requirement of qualitative supercompleteness requires that a chirality
function does not vanish identically for any non-racemic mixture, whatever the
nature of the ligands. Given this postulate as well as the ones derived from the
elementary requirements of chirality we proceed to deduce the transformation
and symmetry behaviour of chirality functions via the symmetric group. To reach
this goal we have to establish a method to construct mixtures of non-isomers.

As within the C-concept let us consider molecules of a class specified by a given
skeleton (skeletal class) with pairwise different ligands. In order to obtain mix-
tures of non-isomers the number N of ligand sorts must be chosen greater than the
number n of the ligand sites. The number of additional ligand sorts is given by

m=N—n, m>0. 1

The SC-concept to be developed equals the C-concept in the limiting case N =n
and m = 0. However, by using a trick we can establish a connection between
SC-concept and C-concept in any case. The trick consists of assuming a given
molecular skeleton to be extended formally by m = N —n ““fictive” ligand sites
which do not exist in reality. Each one of these m sites has to be occupied formally
by aligand of a sort not appearing in the proper molecule. The proper molecule L.
is identified by the vector consisting of the symbols of the n proper ligands,

Lez[lla 127 LRI ln]

L; denotes the vector consisting of the symbols of ligands attached to the fictive
sites,

L= [ln+1, Lpvas o » lN]-
Thus the vector

L=[LJLd=[l, ..., Lllyss, .- ., In] )

represents the molecule extended by the ligands attached to the fictive sites
(fictively extended molecule). Fig. 1 demonstrates the situation by means of the
two allene derivatives 1 and 2 assuming six sorts of ligands (A, B, C, D, E, F).
Note the essential fact that the two non-isomeric molecules may be assumed |
formally to be isomers provided that the skeleton is extended by fictive sites
(“quasi-isomer” or “fictive isomer”). Consequently mixtures of non-isomers can
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L,=[CDAB] L =[BEFC]

L,=[EF] L=[Ap]
L =[CDABIEF] [’ =[BEFCIAD]

Fig. 1. Site numbering of the fictively extended allene skeleton and two allene derivatives 1 and 2
regarding six sorts of ligands A, B, C, D, E, F. The fictive skeletal sites and the ligands attached to them
are situated in the cloud

be treated formally as mixtures of isomers providing the advantage that many
results of the C-concept can be adapted.

Obviously we have to postulate that the fictively extended molecule equals the
proper molecule in all physical properties. In other words, a function ¢(L)
describing physical properties must not depend on the ligands attached to the
fictive sites:

H(L) = (L L) = d(Lo). 3)

Therefore the ligand symbols /41, . . ., iv occur just formally in the vector of
arguments L of ¢(L); (e.g. ¢(L) being a polynomial one can presume the
corresponding ligand parameters to enter in zeroth power). These ligands do not
even appear formally in the argument of (L)

It must be emphasized that the results of the SC-concept presented could be
derived without regarding fictive ligand sites and fictive isomers (e.g. see Sect. 4
and literature cited therein). Indeed, in this case the way of concluding would be
more complicated and the elegant implements and results of the theory of chirality
functions developed by Ruch and Schénhofer [3, 4] could not then be adapted.

3. Group Theoretical Treatment of Mixtures of Non-Isomers
Let us now turn to the connection between the C-concept and the SC-concept:

The symmetric group &, of the n! permutations of the n ligands attached to the
proper skeletal sites forms the basis of the C-concept. The group &, being a
subgroup of &,,, is isomorphic to the group & of the symmetry operations of the
skeleton. © contains a subgroup &, of index 2, the permutations of which are
assigneq to the proper rotations of the skeleton and therefore maintain the
molecule invariant. The elements of &*, the coset of &, in &, correspond to
improper rotations of the skeleton.
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Concerning the SC-concept the &, is replaced by the symmetric group @y,
consisting of the permutations of all the N ligands. The ©y includes also those
permutations that interchange real and fictive ligands, thus leading to quasi-
isomers. In this way mixtures of non-isomers can be managed algebraically like
mixtures of isomers within the scope of the C-concept, as mentioned above.

The group &; of covering operations of the fictively extended skeleton can no
longer be represented by the point group & of the proper skeleton. It rather
consists of all covering operations of the proper skeleton connected with any
permutation of the fictive ligands. Let us now establish an isomorphic mapping of
the group &; onto a subgroup Il of Sy, Gp~11. Given @; = & x &, with &,,, as the
symmetric group of all m! permutations of the m ligands attached to fictive sites
an element ¢; = ¢ of &; with c€ ®, ¢ € ©,, is mapped onto the element s¢ of 11
where s € ©,, is the image of ¢ according to the isomorphism &~&. The subgroup
1 given by

N=6xs,, “)
takes the role of & in the SC-concept.
Analogously to & the direct product group

Up=Sex &, 35)

is the group of all permutations leaving the molecule unchanged in the SC-
concept. Since both the permutations of &, corresponding to proper rotations and
the permutations of the fictive ligands keep the molecule invariant, one may also
state that a proper rotation of the fictively extended molecule is defined by an
adequate rotation of the proper molecule connected with any permutation of the
fictive ligands. Because of (4) and (5) 11, is a subgroup of 11 of index 2. Within the
SC-concept the coset 1U* of Uy in I

U*=8*x,, ‘ (6)

takes the role of ©*. The elements of &* correspond to improper rotations of the
proper molecule whereas the permutations of the m fictive ligands keep the
molecule invariant. Provided that two fictively extended molecules are connected

Table 1. The important groups, subgroups and cosets
within the C- and SC-concepts

Elements of

the group/coset Group/coset within
correspond to C-concept  SC-concept
transitions to S, SN
isomer/quasi-isomer

covering operations & nN=exg,,
proper rotations S0 U= xS,

improper rotations &* *=&*xe,,
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4 Fig. 2. A fictively extended skeleton of C,,-symmetry

w owing the four proper skeletal sites 1-4. The two fictive
’ skeletal sites 5 and 6 are situated in the cloud

by a permutation of 1I* the corresponding proper molecules can be transformed
into each other by an improper rotation; thus they are antipodes.

In Tabie 1 the groups, subgroups and cosets just introduced within the scope of the
SC-concept are opposed to their analoga in the C-concept.

The groups offered in Table 1 are explained explicitly for the skeleton of Fig. 2 in

Example 1:
Considering a skeleton of C,,-symmetry with four skeletal sites and six sorts of
ligands as shown in Fig. 2 we derive

& ={, (14)(23), (12)(34), (13)(24)}
So={e, (14)(23)}
&% ={12)(34), 13)(24)}
U=CxG,,=8x{e, (56)}
={e, (14)(23), (12)(34), (13)(24), (56), (14)(23)(56),
(12)(34)(56), (13)(24)(56)}
Up= G X S,, ={e, (14)(23), (56), (14)(23)(56)}
I* = G*x &,, ={(12)(34), (13)(24), (12)(34)(56), (13)(24)(56)}-
Within the C-concept the chirality representation I, of  is of importance. Any

chirality function $(L.) must transform according to this one-dimensional
representation. Its characters are

X (=1 forse®,,
X (9)=—1 forse@*

(N

That is to say that the character is +1 for permutations leaving the molecule
invariant and —1 for permutations leading to the antipode. In the SC-concept I' is
substituted consequently by T, this being a one-dimensional representation of
the subgroup 11 of ©x. As the permutations « € ll, leave the (fictively extended)
molecule invariant and the permutations «€ll* yield the mirror image the
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characters of T',, are

Xo(w)=1 for«ely,
(8)
Xo(z)=—1 foraecll*
We call T, the o-chirality representation. From (4-8) it follows that I, is the
direct product

T, =T, %I 9)
of I, with the totally symmetric irreducible representation ' of the S,,,.

We denote the projection operators onto I', and I'; by £, and £,, respectively.
For the character projectors of the irreducible representations 'y, T and Ty of
the symmetric groups &, ©,, and Sy, respectively, we shall use the symbols /zﬁf) ,
Y. © and ﬁ%‘}’). Thus ﬁ(,,ll) means the projector onto the totally symmetric represen-
tation ' of the ©,,,. We always refer the permutations s to the numbered skeletal
sites. By O(s) we denote the permutation operators working on functions and

defined by
O(0)¢(L)= (s 'L).

Here sL is the ligand vector obtained from L on applying the permutation 4. The

O(s) form symmetric groups &,,(0), ©,,(0) or & (@) which are isomorphic to &,,,

S, or Sy, respectively, under the mapping s<> @(s~ ') [4]. According to [4] we

denote the projection operators 2,, %, PO PP and P associated with P> Fogs
W 4% and ﬁg\‘}“) by capital letters. With respect to (9) it holds

fo= pxtims  Po=P P, (10)
Because of (7), the total symmetry of Y and (8) we find the operators 4,, D oo
given in (10) to be

zi[ _ ] w_ 1

ﬁx |@| 452@0 ? a'eZ@* ) ™ m! Jez(:ém f, (11)
=—1—[ — l]

=) LT E (12)

U, being the set of all the permutations of the form s¢ and UI* being the set of all
the permutations of the form 4'¢, (10) also results directly from (11) and (12).
Analogously to the C-concept (see [4], p. 235) any mixture G can be interpreted
as the result of the action of an element 4,

4= % b(9)s, (13)

seG&pn

of the group algebra of the & on a vector L, which represents a given molecule:

G= Y b(a)sL. (14)

PIACTN
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Hereby b(s) means the concentration of the compound ¢L. Inserting (13) into (14)
we can write

G=4L. (15)
According to ([4], p. 236) we call £ the ensemble operator.

On treating non-isomeric mixtures as mixtures of fictive isomers the way of
concluding of the C-concept can be transferred to the SC-concept:

1. A mixture G = #L is non-racemic if, and only if,
#8700 (16)

holds (see [4], p. 237). We designate z,¢ as the o-component of £ (cor-
responding to the chiral component of [4]).

2. A function ¢ (L) represents a chirality function if, and only if,
¢(4.L)=¢(L) (17)
holds (see [4], p. 239).
3. For a chirality function ¢(G)
¢(G)= ¢ (L) = d(fobL) (18)
holds in any case.

That is to say, only the o-component 4,¢ of the ensemble operator 4 regarded is
decisive for the value of a chirality function of the mixture G =4L.

In addition to point 2 we have to raise another postulate concerning chirality
functions: within the scope of the SC-concept a chirality function ¢ (L) = ¢(L3‘Lf)
must only depend on the ligands situated on the real skeletal sites (see Eq. (3)):

G(L)y= d(LeJL)= $(L).
It follows that

G (pol) = S (frxLel frin L) = b (s, Le). (19)
With regard to (17) it holds
HL)= ¢ (L) = d(fxLe) = S(Lo). (20)°

4. The Formal Conditions for Qualitative Supercompleteness

The formal conditions for qualitative supercompleteness are obtained in the same
way as those for qualitative completeness. Let us briefly repeat the conditions for

5 Within mathematics functions are defined as mappings: in this sense ¢ stands for a mapping of the
N!-dimensional space R _the points of Wthh correspond to mixtures ¥, b(s)sL of molecules oL,
s€ &, — onto the one-dimensional space R'. Adequately & is a mapping of R™ onto R'. Equations
d(L)= S(L)or (L, |Ly= &(L,), respectively, mean that the value of the function ¢ does not depend
on L, but only on L, and that for given L. ¢ and & give the same function value. Thus the same
dependence as the one of qS on L, prevails.
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qualitative completeness [4]:
A chirality function is qualitatively complete, if the }, z,n, functions
SAPL) rwithz, #0; i=1,...,z; j=1,...,n, (1)

are linearly independent. n, means the dimension of the irreducible represen-
tation T of the &, z, states how often I', appears in re, E,’) are the projection

and shift operators associated with ry.

Within the scope of the qualitative supercompleteness the numbers x,, are to be
considered instead of the numbers z,. x,, indicates how often the o-chirality
representation T, of the subgroup Ul of Sy is contained in the irreducible
representation 'Y of the Sx. Analogously to Eq. (12a) of [4] the o-component
#q¢ of an ensemble operator can be decomposed into

#ot=% L Y b 4. (22)
wi=1j=1
E}”), i,j=1,...,n,, are the projection and shift operators of the irreducible

representations I'Y” of the & forming a basis of the group algebra of this group.
bf]w ) mean the coefficients of linear combination. The n,, stand for the dimensions
of T . Corresponding to (18) the value of the chirality function for the mixture
G = 4L is obtained as

$(G)= L) = (o tL)=F 3 5 bP (48 L). (23)

wi=1j=1

Similarly to the considerations of the C-concept the following results follow
directly from (23):

A chirality function ¢(L) is qualitatively supercomplete if, and only if, its
components

d(43°L) forallwwithx,, #0;i=1,...,%,j=1,...,n,, (24)
are linearly independent.

Nevertheless the conditions for qualitative supercompleteness can also be stated
without using representation theory. Dugundji et al. [11] have demonstrated this
for qualitative completeness. Their argumentation can be summarized as foliows:
LetL® k=1,..., g, be one enantiomer of the enantiomeric pair k. The number
of enantiomeric pairs is given by

n!

g—|—@—|- (25)

It holds that a chirality function ¢ (L,) is qualitatively complete if, and only if, the
functions

FULP), LD, ..., 6@LE) (26)

are linearly independent. This result is directly reasonable because of every
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isomeric mixture G being a linear combination
G=a;L +a,LP +- - - +aLP®. @

Thereby a negative concentration a, is to be interpreted as the positive concen-
tration —a;, of the antipode of L. The chirality function

H(G)=ar1d(LO)+- - -+ a (LP) (28)

of an isomeric mixture G according to (27) cannot be identically annihilated if the
¢(L(k)), k=1,..., g are linearly independent. This deduction of the formal
conditions for qualitative completeness is equivalent to the one arguing via
regular induction [4, 12]. It follows that the functions ¢ ( /;(')Le) i=1,...,z;
j=1,...,n, and the functions $(LP), k=1,..., g span the same function
space.’ Because of the equality of the dimensions the number of enantiomeric
pairs g = n!/|S| equals

&= %: 2z, = Z_: NeZy. (29)

Hence the conditions for qualitative completeness can also be formulated without
using a decomposition into irreducible representations of the &,. We view this
fact as an additional argument (see also {9-11]), that interpreting the
decomposition into irreducible representations of &, as an appropriate
decomposition of the chirality phenomenon has no physical relevance at all.

Analogous considerations are to be applied with respect to qualitative super-
completeness. With N ligand sorts and n skeletal sites the number A of enan-
tiomeric pairs equals

N\ n!
h= ( ) .
n/ ||
(],\,I) gives the number of possible selections of n different ligands and is multiplied
by the number n!/|&| of antipodal pairs for a given selection.
It follows h = N'!/(m!|S]) and because of m!|S|=|8,,|x|8|=|8,, x &|= 11

N1

hzm—l.

(30)

Eq. (30) represents the analogue of Eq. (25). A chirality function ¢ (L) = d(L|Ly)
depending only formally on L, is qualitatively supercomplete if, and only if, the i
functions

(L), 6(LP), ..., LY (31)

are linearly independent, whereby I®, k=1,..., h, represents one enantiomer of
the enantiomeric pair k. Analogously to the reasoning concerned with qualitative
completeness it results from the identity of the conditions that the functions (24)

8 Asin [4] F denotes the index of an irreducible representation T'? containing I’ o
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and (31) have to span the same function space. As the number of the basis
functions must be the same again it follows for the number h = N!/|ll] of the
enantiomeric pairs
N1
h=7==3 nuX, =2 NgXs. (32)
o "
According to the notation F of [4] the representations 'Y with x,, # 0 are denoted
by W, if the o-chirality representation I, is contained in Ty,

5. The Determination of the x,,

Referring to Sect. 4 the x,, indicate how often the irreducible representations I'{"
of ©y contain the o-chirality representation I', =T, X 'Y of the subgroup
U =&x%x®&,,. The x,, can be easily deduced from the z, of the C-concept (see [4],
Sect. 4) by means of Froebenius’ reciprocity theorem [13]: First of all let ¢ (L.|Ly)
be a function of two sets L. and L; of n and m arguments, respectively,

¢(LelLf):¢(ll7"'7 lnlln+19 ---,IN), N-n=m. (33)

Considering permutations of arguments within L. ¢ (L) is assumed to transform
according to the irreducible representation I'” of ©,. Likewise, $(L) might
transform according to 'Y of &,, with respect to permutations of arguments
within L;. Thus on permuting arguments within each of the two argument vectors
simultaneously the resulting functions form a basis of the direct product 'Y’ x I'?)
which is an irreducible representation of the subgroup ©,, X &,,, of &5 However,
by allowing for all N! permutations of the N arguments, i.e. including those
between L. and L; the functions obtained form a basis of the so-called outer
product PRI, Generally the outer product is a reducible representation of the
©n, see [14]. Table 2 offers a view of the transformation properties cited above.

From the reciprocity theorem one can deduce the following corollary: The
coefficients ¢, in the decomposition

TYRCY =Y t,, [V (34)

Table 2. Representations spanned on permuting the arguments of ¢(L.|Ly)

Kind of permutations Representations spanned Properties of the
representation

only within L, re irred. repr. of &,

only within L, re irred. repr. of ©,,

simultaneously within roxre irred. repr. of &, X G, c By

L. and within L,

all permutations (including rery red. repr.of @,
those between L. and L)
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of the outer product I’E,”@F ) according to the irreducible representations 'Sy’ of
S equal the coefficients ¢,,, in the decomposition

T =YY tuTPXTY) (35)

of I'y with respect to the irreducible representations I'” x ' of the subgroup
S, XS, of ©p. As the reciprocity theorem is related to the theorem of Ruch and
Schonhofer on regular induction [12], this result can also be got directly by the
latter’. With respect to this point one has to bear in mind that I'PQrE arises from
Y x1% by regular induction.

Considering the right hand side of (35) the representations I'{’ contain the
chirality representation T',, z, times, and the 'y contain the totally symmetric
representation I m 0,1 times, 8, standing for the Kronecker delta. 1"5,? is included
in T if, and only if, v=1. It follows, that the o-chirality representation
r,=r,xr @ is contained in I xT® exactly z,8,; times. With respect to the
decomposition (35) we obtain

Xw = Z Z twmzr8v1
implying
Xy = Z_ thlzr'- (36)

With this we could confine the summation to the indices 7, with z # 0. f,,,1 and £,,71,
respectively, can be determined by the decomposition of the outer product (34) in
quite a simple way. The decomposition can be performed by a graphic rule, that is
especially simple if one of the factors is the totally symmetric representation:

The outer product TPRIY contains an irreducible representation TS of Sy
exactly once if the diagram vy of Ty can be formed by adding the m boxes of the
single line diagram ', of I'Y to the diagram v’ of I'’ without putting any two
boxes added into the same column. All the other I’ §\‘7) are not contained in the
outer product. Therefore t,,,1 only takes the value zero or one.

Example 2:

Consider the skeleton of Fig. 2 with Cy,-symmetry, and four ligand sites. Let us
assume seven sorts of ligands, thus n=4, m =3, N=7. Only two of the five
irreducible representations I'S’ of ®, contain the chirality representation T,

namely I'? and T with z,= z, = 1.

y@ = 1] ’ V= | .
] ]

7 We thank an anonymous referee for calling our attention to this point.



Theory of Chirality Functions 15

According to (36) we have to sum over 7= 2, 4 obtaining
X = tw21t byar- (37)

To derive t,,1 and t,4, let us turn to the decomposition (34). We identify the I'; (w)
with the partition diagrams v$*’ and apply the graphic reduction rule:

[Je[TT1]1= L le]e]e) + [efe] +
L___ .
¥ ¥ ¥ ¥
(38)°
[T + o+ [ +
] -] ]
Y,(74) 7(75) y(76) Y(78)

e [T - [TLEE + [TE TR + [T

C (] u
) — S—
] L]
6
v$D vs” ~§? v vy v5
(39)°

Consequently, #,,; equals one if the diagram 3" is found in the right hand side of
Eq. (38). The correspondlng statement applies to t,.4; referring to (39). Because of
(37) it follows x,, = 2, if v appears both in (38) and (39), x,, = 1, if y* is present
in exactly one equation and x,, =0, if %"’ is met with neither equation.

Thus the following x,, are derived to differ from zero:
Xq4=Xe= 2,
X2=X3=X5=X7=Xg= X190~ 1.

For the following considerations let us arrange the partition diagrams 7y
(obtained by adding m = N — n boxes to a diagram y$’ without repetition in the
same column) in a half order $ . (For the concept of half orders see [16]). v is

formed by the set
@g}r (W)|twr1 1} (40)

Given Example 2, the half order @%) or @f{?, resp., is built by the diagrams of the
right hand side of Eq. (38) or (39). The half order to be defined which we call
TU-half order’, is not identical with the half order of Ruch and Schénhofer [4],

® For the sake of clarity the three boxes added to the v$ are marked by a point. The numbering of the
irreducible representations of the &, obeys Young’s order.
® For this notation we have chosen T, U as being the two letters following R, S in the alphabet.
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named RS-half order here. In the sense of the RS-half order a diagram 7' is
defined smaller than another diagram v, y' < v, if it can be obtained from y by
transferring boxes from upper lines to lower ones. Within the scope of the TU-half
order, however, we define a diagram y% to be smaller than another diagram y&,
v < ¥, if we can construct it by moving boxes from the first line downwards.
Analogously to the RS-half order y&’ < y& is valid. If a diagram is smaller than
another one in the TU-half order, the same holds with respect to the RS-half
order. Nevertheless, the converse is not true.

It should be emphasized that the TU-half order does not represent the analogue to
the RS-half order. From the TU-half orders the x,, can be derived. But a TU-half
order cannot be used to discuss the problem of active partitions. For this purpose
we still make use of the RS-half order (see below).

WD

.‘Igf,?; contains a largest diagram yy derivedofrom yff) on extending the first line
by m boxes. Proceeding step by step from y% 7 to smaller diagrams v’ € H5 just
one, if any, of the boxes removed from the first row may be put under each
column. Reversing this procedure, a larger diagram can be obtained from a
smaller one solely by pulling one box at most from each column to the first line.
Fig. 3 gives the TU-half orders $F and @f{% for the skeleton of Fig. 2 with
N=4,5,6,7,8.

¢+ equals one just for the representations 'Y’ with diagrams ¥’ € 1% Since it
is zero in any other case, we may rewrite (36)

Xy =L Zr
r

YR e DR
Eq. (41) expresses x,, to be composed additively by those z7 for which £,-;1=1,
vy € 3% holds. Both Eq. (36) and (41) are easily verified by substituting them
into Eq. (32) deduced for the number & of enantiomeric pairs:

h=22r~znw

Y € DR
In the case of a skeleton of C,,-symmetry (see Fig. 2) with z, =z, =1, it follows
therefore that the number h of enantiometric pairs equals the sum of the
dimensions n, of the representations met with HR, and 32)563,. Fig. 3 gives the
dimension n,, beside each diagram. (For the calculation of n,, see [17]). The last
row contains the sums h. We leave it to the reader to control 4 in quite an
elementary way by counting the number of enantiomeric pairs according to (30).

(41)

(42)

Let us briefly turn to the question which ligand assortments are ““active” thus
treating compounds with partially equal ligands. An assortment of N ligands is
characterized by a partition diagram v%). The length »{ of the ith row of ¥y is
equal to the number of ligands of the ith kind. As the ligands are to be distributed
over the fictively extended skeleton v is the greatest possible number of ligands
of the sort i in the real molecule. A ligand assortment is termed active for a chiral
ensemble operator £ (with 4,6 #0) if the ligands can be attached to the sites of
the fictively extended skeleton in such a way that the mixture £L is non-racemic.



17

Theory of Chirality Functions

sired SLISWONURUS JO i JOQUIMU oY} SUIBINOD MOT 5] SUL ‘i4 pue (14 543 Jo opIs puey 1Y31 oY1 uo UoAIS oIe “u pue u suorsuswip oy, Juiod & £q payIew
oI POPPE $9X0Q dY) AJLTED JO 9ES AU JO,] "SAYIS ALY U-N Y T Br] ul usatl AnowrmAs-2) o uo[aYs oyl 10§ ‘R = N 4G pue 4G 1op10 1Ry [ oYL € "B

(0144

oLe

06

0o¢ 9

(v}

@




18 G. Derflinger and H. Keller

In analogy to (4] one obtains the following results:

1. The ligand assortment corresponding to an assortment diagram y% can be
filled into a representation diagram vy’ without repetition of identical ligands

in the same column, exactly if —y(s) issmaller than yﬁ(‘/) , v <y in the sense of
the RS-half order defined in [4].

2. Aligand assortment corresponding to an assortment diagram ' is active with
respect to a chiral ensemble operator 4, if, and only if, y(s) <= v holds in the
sense of the RS-half order at least for one w with z,£ Ay #O0.

3. Aligand assortment is active with respect to all chiral ensemble operaLtors 4, i,
$ < 4% for all w. If there exists a smallest diagram yw 7 in every

and only if, y§ < v~
R, this condition is equivalent to the condition that 4% < 75\}” * holds for all 7.

4. By setting £=¢ we conclude from 1 that those ligand assortments are active
for the molecule for Wthh yﬁ\‘,’ c yﬁff) holds at least for one w. This is
equivalent to 7552 c yg\‘f ? for at least one F.

6. The Homomorphism of the TU-Half Orders 0

Now we start to discuss some of the properties of the TU-half order which we shall
need later. Inspecting Fig. 3 one concludes that the number £D of diagrams of
83(') grows with increasing N up to a maximum value §f,',2,x remaining constant for
all greater N. This constancy holds if the number m = N — n of boxes added equals
at least the length 0{” of the first row of ¥’ (notation according to [4]). To realize
this consider the fact, that all poss1b111t1es of putting boxes, if any, below columns
of y are exhausted by m= 0. Supplled with as many boxes as there exist
columns an overstocking of m > 0{” does not increase the number of possibilities,

since only the first lines of the y%’ are extended.

In Sect. 5 the rule of forming the elements of H’3 as well as the relation < have

been defined. According to these statements we find the mapping f,n,,

frons: O ORes  Na= Ny, 43)
to be a homomorphism, fy,~, maps each element v e 3, onto the element
7N2 leNz(le) )e@(&z, the first row of which differs from yﬁ\‘}’l) by N,—N;

boxes™. If yg\rl) is obtained from y(w) by pulling boxes from the first line

downwards, & < v, the same must hold with respect to diagrams the first line

of which is extended by N, — Ny boxes.

YR YR >R < R
If Ny=n+0p (implying N,=n+o0 the homomorphism reduces to an iso-
morphism.

10 The numbering index w of 4%’ and I'YY is no longer derived from the ®, since we wish to prevent
corresponding diagrams from being denoted in a different way. Rather the indices are to be taken from
Spn,With N'=n+ omax Subsequently they are transferred from " € .sg(') to the diagrams of all the
other half orders H$U2. 0ma, gives the chirality order o, =max {0’} in accordance with [4].

N'+ n + 04,,, marks the smallest number of ligand sorts exhibiting §(’) =¢0  with respect to all 7.
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Concerning the number £D  of the diagrams of a half order HRwithN=n+ o$
there exists a simple formula,

max =" +1). (44)

stands for the number of columns of the length i of the diagram Y. (D =

leadlng just to a factor one we need not assign a limiting value to the subscript i of
(44)). Eq (44) can be proved as follows: Given N=n+o{, which equals
m= o, there ex1st enough boxes to put one below each column of y\,’. Provided
yﬁf) contains &{” columns of length i we may transfer none or one or ... or e
boxes below these columns. Thus we end with ¢{” + 1 possibilities, from which

(44) follows.

(r)

)

For the case of m < 0{” no simple formula to obtain £Q by means of the diagram
"

v, can be derived. From the definition of ¢, it follows

7 =2 tun. (45)

7. A Construction Rule for Qualitatively Supercomplete Chirality Functions

In the following we give a simplified description of the rule how to construct
qualitatively supercomplete chirality functions. The exact derivation is a bit
troublesome and not of primary importance for discussing the properties of these
functions. For the complete method of derivation, including all the definitions and
proofs the reader is referred to the appendix.

7.1 Requirements and Conditions

Let us recall the two essential postulates chirality functions have to fulfill. Firstly, a
chirality function has to meet the requirement of qualitative supercompleteness.
For that purpose the properties of a set *up to a chirality function ¢(L) are
determined by the smallest diagrams Y% » of every H% with N=n+o0{’ as
shown in Appendix A. Secondly, a chirality function may depend explicitly only
on parameters of ligands attached to proper skeletal sites according to Eq. (3),
d(L)=d(LJLy)= $(L.). As a consequence the construction procedure acts
within the frame of the &, if the formal properties of chirality functions derived
via a formal extension to N arguments are known (see Appendices A and B).

We now introduce diagrams 8¢ obtained from 3’ by removing the first rows.
For the number v of their boxes v <rn holds; w is transferred from y(w) AW
means the representation of &, to which 6% is assigned. Let y(L)= x(L.) be a
“Niherungsansatz” to ¢(L)=¢(L.) obtained by a “Niherungsverfahren”.
Combining the two postulates it follows with respect to the set ups w(L.) to a
chirality function X(Le) that the number of arguments and the transformation
behaviour are determined by the dlagrams 6(‘” obtained from the smallest
diagrams Y& of HRwith N = n + 05 on removing the first line. As the resulting
diagrams 5 equal y7 the necessary condition results that a SC- -chirality
function has to consist at least of z; = x,: components for every F with set-ups
&0 (L) with u=1,. .., %, dependingon exactly n ligand parameters and
transformlng according to the AL*¥ which equal the I'” concerned (see Appendix
A).
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There emerge some important results:

a) Onremoving the first lines diagrams belonging to different half orders 7 of
the same F become identical if they are associated to each other by the
homomorphism (43). For N = n+ 0y,,, the homomorphisms reduce to iso-
morphisms for all 7. Thus independence of the number N of ligand kinds can be
reached for N =1+ 0nya: the diagrams S(W i arising from the smallest
diagrams y% * equal v for all 7. From a practical viewpoint this seems a
matter of course, since the number of ligand kinds should normally be
unlimited. The concept developed leaves us with a cancellation of the upper
limit thus rendering an arbitrary choice of N possible, if N equals at least
N+ Oy . We shall treat the case N = 1 + 00, in the following and accept it by
definition as the general one supplying us with an appropriate molecular
chirality function of a skeletal class, independently of the number N of ligand
kinds.

b) The principle of pairwise (or better: many-body) interactions [18] assumes a
chirality observation of a molecule to consist of all possible interactions of two
(or more) atoms or groups that do not vanish for symmetry reasons {18]. In
analogy to this principle the components @4 (L,) derived from the &3 (L.)
may be interpreted as interaction terms of a certain number of ligands [4].
Applying this interpretation to SC-chirality functions it follows, that qualita-
tive supercompleteness requires the highest interactions available; i.e. its
components @' (L.) depend on the maximum number of ligand parameters.

Since the molecular skeleton is inherent to the basic model of the theory of
chirality functions a separation into all-ligand and all-ligand-skeleton inter-
actions cannot be performed.

However, this comparison calls our attention to a crucial point: The components
of C-chirality functions depend on the minimum number of ligand parameters,
while those of the SC-chirality functions depend on the maximum number of
ligand parameters. While C-chirality functions imply the lowest interactions
necessary for every 7, the SC-concept gives the highest possible ones. From a
physical point of view both the results seem unsound. If one takes into account the
physical considerations of [18] all the possible interactions should be included.
One could also apply mathematical considerations: Let us require a chirality
function to be of the most general form under the given restrictions. This
requirement is called the requirement of greatest possible generality. It represents
the mathematical analogue of the physical concept of the principle of many-body
interactions. This mathematical principle leads independently to chirality
functions of the same properties, namely that all possible interactions are
included.

1 The limitation downwards, i.e. to all the cases N < n + 0,,,,, arises from the treatise of the problem
within the &, (or &,, resp., for the C-concept). This limitation-thought to be devoid of physical
meaning-cannot be prevented as within this formalism molecular properties are to be derived via
properties of mixtures.
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Setting up functions &' *;)(Le) according to the y\ or 85,‘”’9, respectively, concer-
ned, all the possibilities of highest interaction terms to be considered are exhaus-
ted. There do not exist other " (L.) depending on exactly n ligands but differing
in the transformation properties (compare also Appendix A). Thus the next step is
to take into account all the components the set-up (Z)E,W) (L.) of which represents a
function depending explicitly on (n — 1) ligands. This procedure is continued until
one ends with the lowest interaction term for every $%,. Fortunately the SC-
concept renders favorable conditions for the construction of chirality functions
complying not only with the postulate of qualitative supercompleteness but also
with compelling physical arguments and/or the mathematical requirement of

greatest possible generality.

7.2. The “Ndherungsverfahren”

Concerning the second “Niaherungsverfahren” the above considerations result in
the following: The orders of the lowest interactions, i.e. the number of arguments in
the set-ups, can be obtained from the C-concept. Furthermore they can be given
by removing the first lines of the largest diagrams of the appropriate 7. Then the
order equals the number of boxes of the remaining diagram. Thus the highest and
the lowest interactions are known. All the other kinds of interaction can be
obtained by removing boxes one by one from the diagram representing the highest
interaction till the one standing for the lowest interaction is formed. Each
intermediate diagram gives a new interaction term. This procedure can be
reformulated in terms of the 7. By eliminating the first lines of all y%’ € $& a
half order hY arises the diagrams 89" of which designate all the kinds of
interactions possible. According to the skeletal class we thus get all »-ligands(-
skeleton)-interactions up to n-ligands(-skeleton)-interactions. Some of the ele-
ments of the 7, with constant n,N and different 7 appear to be alike. As there
does not exist any convincing argument for differentiating between the
components of a chirality function with respect to 7, like diagrams are collected
and their x, obtained by summation according to (36): x, = > t,,12,. The
components y *)(L.) of the chirality function are set up according to

XML =2, Y 060 ¥ 65 (L), (46)
u=1

(see the appendix) with & " (L,) representing the set-up for each 8§ depending

explicitly on v ligand parameters, v=n. ¥ =292 denotes the Young
operator of the EZSZ-type of an arbitrarily chosen Young tableau k to the partition
diagram 80", 9" is the sum over all vertical permutations ¢, of the given tableau
multiplied by the parity J, of the permutation, 3 " =Y 5 so#s and 28
represents the sum over all horizontal permutations ¢, 9" = Y. # (see[14]). For

a simple notation &(”(L.)= oM. .., Lty .. ., 1) will be written as
o, ..., 1,) exhibiting /,.,1, . . ., I, to appear only formally in the argument of
& (Ly). Furthermore, we shall abbreviate @%)c&f,w)(ll, R T STCT A T

@gfc)a‘)f}”)(ll,...,l,,) by c&fj”)(ll,...,l,). The operators @’(af,w))~working on
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functions (see Sect. 3)-correspond to x,, suitably chosen permutations " € &,.
Besides on w the choice of the 4"’ depends also on the selected k (see Appendix
B). Consequently, the chirality function is given by

xLd= Y x"™(Lo). 47)

w
xu#z0

Now the procedure is shown by means of an example.

Example 3:

Consider a skeleton of symmetry C,;, with four skeletal sites (e.g. the skeleton of
Fig. 2). Obviously 0., = 3, thus we choose N = 7. The half orders @537) and 957 are
given in Fig. 3. On removing the first lines of the diagrams ¥§ ) we obtain the half
orders h? and h{" of all diagrams 6{", see Fig. 4 and Appendix B.

After having collected those diagrams containing equal numbers of boxes we get

one first order term

v=1 82=[], m=1, -1

three second order terms

v=2 8&3)=Dj, x3=1, gs=1 and

3(24)=B, x4=2, qs=1

/\
/\/

s \ / 10E:13
SB:DG

(2 {4}

b4 a
Fig. 4. The half orders 2 and b obtained on removing the first lines of $3 and HJ of Fig. 3 with
N<n+0,, The numbers on the left side of the diagrams §”e b indicate the superscripts w, the
numbers on the right side the dimensions g,, of the A, v equals the number of boxes of each diagram
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four third order terms
v=3 8%5)=I[j, x5=1, q5=1,

89 = | x6=2, g¢=2  and

and two fourth order terms

L]

v=4 8= ,  x=1, @=3 and

|

with corresponding diagrams 8%, x,, and dimensions g,, thus rendering ten
components of ¥(L.). We choose ¥’ with k = 1 according to the Young tableau
given beside 89" in the following and omit the index k of ¥{y. Given P, =

O(e+(14)(23)-(12)(34)—(13)(24)) the components ¥ *(L.) are derived according

to (46):

With 62 =[], x,=1, g,=1; the standard tableau [1], the set up &*(,) and the
Young operator %@ =(@(¢), the basis is given by [#¥P@3(1,)]=[&*(,)]
showing trivial transformation behaviour. Putting O(/2)=0(), ¥2(L,) is
established to be

55110) = x10=1, q10=3

X?(Lo)= &) =3P (1) ~ 6Dl + 6P (1)

8 = E]:], x3=1, q:=1;

&1y, L)

Y= e+ (12))
basis [¥P6 (1, L)1=[6,, )]
transformation behaviour:
8P (b, )= a1, 1)
0(1") = 0((14))
XLy =0, L) =6, 1)

6(24)=B, Xy=2, qs=1;

6P b)) 05, D)
YP = 0(.—(12))
basis [@(4)‘5 544) (I, lz)] = [C—l’(u4)(l1’ 12)]
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transformation behaviour:
P, L) =~aP, )
O6)=0()  05)=0((13)
X VL) =617 (h, )~ &1 (I, 1) + @5” (b, )= 35" (b, L)

8¥=[T111, =x=1 gs=1;
&, b, )
YD = 0(c+(12)+(13) +(23) +(123) +(132))
basis [ V&P (1y, b, L)]=[8™(1y, b, 1s)]
transformation behaviour:
&y, Iy ) =@ (I, b, 1) =@l I, b) = 0Pl s, Iy)

= 0_)(5)(13’ Iy, )= 15(5)(11, by, 1)
0= 0(e)
FOL) = 6O, by 1B — 3y, by )= 6Dy, I, 1)+ 3P (b, s, 1)

| ' 1]3
61(36)=_J _]7 X6=2, 616:2, _2‘
U byl 65 (b, by k)
YO=0((c—(12))(e+(13))) ¥ =0(23)%®

basis [@(é)wu)(lu b, 13) @361)0);6)(11, L, )= [0)(6)(11, b 13) w(ﬁ)(lh L, 5)]

transformation behaviour: ..

&8 (ly by 1) = =59 (I, L, )

@y (Il I, )= & (I, b5, 1)

3 (L by )= 6P (L, by, ) =69 (I, b, )~ &% (h, b, b)

6D (s, 1, )= =6 (l, Is, 1)

06 =0(), 065)=0(14)

(6)(L )= w(6)(11, b, 13)‘*'(0(6)(14, L, b)— w(ﬁ)(lz, L, 1) — —(6)(13, Iy, 1)

+@S (I Is, L)+ 69 (lay by 1) = @5 (I, Lay 1) = @5 (I, Iy, 1)

5§7>=@, »=1 g=1

(:)(7)(11, 123 13)
Y7 =0~ (12)~ (13)~ (23) +(123) +(132))

basis (%76 71y, b, 1)]1=[67, b, 13)]
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transformation behaviour:
&Pl by 13) =6y, b, 1) =6V, s, ) = =6 VL, b5, 1)
= _(7)(137 L, by=- _(7)(11, b, 5)
O(4Y") = 0(e)
XLy =7y, by )~ &P, s, 1) — 0V, I, L)+ 07U, b, 1)

213]

828)= [ l, x8=1’ q8=3; i

&® (L, b, 1, 1)

YO = 0((e— (14) (e + (12)+ (13) +(23) + (123) +(132)))

YR =034)%® ¥ =0(234)%®

basis [(¥®G® (1, 1, 15, L) ¥96® U, 1, 15, 1) ¥ 6By, b, I, )] =

(6901, 1, 13, 1) 3Py, by, L 13) 8y, s, L, 1))

transformation behaviour:

%, I, by 1) ==y, b, Is, 1) = ~a® (4, Is, b, L) = 0¥y, Iy, Is, 1)

@O, by 1, Y= Py, 1y b, 1) =~ b, I, 1) = —0® s, L, 1, 1)
=o®(, b, L, I3)

&P, 13,1, ) =%, 1, 1, ) =%y, Ly, Iy, ) = — 3®(ly, I, 1, 1)
=a®(y, 15,1, I)

&, by I, 1) = 3%y, Iy Iy, 1) =—a® Uy, I, I, L) =6, 1, 1y, L)
=0y, b, I, 1)~ 0™y, s, 1, )

@ (s, b, h, 1)=& ls, b, b, L) = =6 Py, b, I, ) = =31y, 1, 1, 1)
=a®(ly, b, I, 1)~ @®(ly, I, 1y, L)

@O, Iy, Ly L) =—a® (U, L, 1y, L) ==, Iy, L, L) = @®(,, I, Iy, b5)
=09y, b, L, 1) —a®(ly, s, L, 1)

0(5) = 0((12)

O =a®, by I, 1) —0®(l, I, L, L) — ™y, b, L, 1)

| 4]

g b

8210) _

1
X10=1, qio=3; 2 |
3]

‘;(10)(11) 127 13; l4)
Y10 = 0((e—(12) — (13)— (23) + (123) + (132))(c+ (14)))
Y =0(3HY” ¥ = 0(234) Y
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basis [ V5O, 1, 15, 1) Y50 O, 1, 1, 1) Y5061y, b, 1, 1)]

=392y, 1y I3, 1) 8y, 1, 1, 13) 67O, I, Ly, 1)

transformation behaviour:

3Ny, 1, 15, 1) = 0", b, I, L) = 3y, L, b, 1) = =6, 1, I, 1)
=—a"I3, I, b, L) = — @1, 1,, 1, 1)

3Ny, b, 1y Iy = =6, 1, 1y, 1) = =60, L, 1y, 1)
="y, Iy, b, Y= @y, I, Iy, 1)
=0y, 1y, b, ) =—&93,, b, 1, 1)

@1, I, Ly, L) = =0l I, Is, L) = 0 0s, L, 1y, L) = @O, 1y, Is, 1)
= =", Iy, Ly 1) = =", I, I, b) = 8"y, by, Ly, 1)

GO, b, Iy 1) =~y L, b, 1) = 90, b, Ly 1) = =3O, I, b, 1)
=", by Iy 1) = 39(la, L, b, 1)
= 6", b, I, 1) =3O, by L, 1)+ 69O, I, 1y, 1)

0(:1) = 0(e)
L) = 0", by Ly L) — 0Ol I, L, 1)

* The first “Niaherungsverfahren” can be considered as a special case of the second
one. For a component ™ (L.) of the chirality function we set up polynomials of
lowest degree which induce 'Y’ and depend only on »=N-0{" ligand
parameters'’. Such a set-up is represented by Gﬁ,ﬁ)(Le), the product of the
Vandermonde determinants of the variables situated in each column, multiplied
by the totally symmetric product of all variables for an arbitrarily chosen Young
tableau k of 8\ By the subscript p we distinguish between the different
parameter sets used. As within the second “N&herungsverfahren” a suitable
choice of x,, permutations s, € &, is to be- made. This choice depends on the k
selected but is independent of p. On performing first O(s{"), followed by the
projection &, a component x"(L.) is derived equal to

OLy=2, Y Y a5 (L) (48)

p=1u=1
(compare Appendix B).

aly) represent the coefficients of linear combination. The summation over all

components gives the chirality function according to Eq. (47). We have to use x,,
different parameter sets for each w. Parameters sets of different w, however, may
be identical. So one needs max {x,,} sets at the least whilst the most general set-up
requires ), x,, parameters for every ligand. Within Example 4 we shall deal with
the minimum set-up of max {x,,} parameter sets. Though this might represent a

12 (w) (w)

is the length of the first row of yy
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loss of generality, a choice of independent parameter sets would render an
application difficult because of the complexity.

Example 4:
Let us consider the skeleton of Fig. 2 in analogy to Example 3. Again 5% (L.) =
60y, .o, LiLsas - . -5 I,) will be written as 6y, . .., 1,). Furthermore, the

parameter A, (l;) of the ligand i will be abbreviated by A;, if p =1, and by A}, if
p = 2. The chosen Young tableau is given beside & ™) and its index k omitted.
Regarding all 8" we thus obtain the components of the chirality function:

6(12) = D ] Xy = 1;
l5(12) =Aq
0= 0(0)
xP(L)=a®P A=A As+Ay)

89=[11, x=1;

6(13) = /\1/\2
09 = 0((24))
XD (L) = a®[A1ds—AzA5]

1
554)=By x4=2;

58 =0 —15) 557 = XiA5 (A1 — %)

0(s$") = 0(2) 0(s5”) = 0((23))

FOL) = ¥ T2 Ay () — A) —Asha(As— AQ)]
+aSP AL —A5) = MG (s —AL)]
+a$B[A1As(Ar— As)— A2d4(As— A4)]
+afY[AIAS (AL —A5) = A5G (A5 =A%)

5(35) = EED: xs=1;
5 = A1A2As
0 =0(0)
KL = a®MA1AaA3=Aa) = A3ha(A1 = 12)]

3]

6) =n. 1
53 ] » X6 27 LZ__J

51 =Aidads(A1=A2) 557 =A1A5AS (AT —AD)
0GP)=0()  0(5)=0(23)
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KL = @A 1A2(A1 = A2) A3+ A0 = A3 s(As— A (A1 +A2)]
+a5 MRS AL —25) (5 +20)— A3AG (A5 —ADAT +25)]
+a P31 A3) A2+ Aa) = Aada(ha = A)(A1+A3)]
+aB[MAS AT = A5 +25)—A22 5 (A0 ~A DAL +A5)]

@ _ —=1-
83 - ’ X7'—1,
‘

69 = A1A2h3(01 — A2)(A1 — A3} (A2 — A3)

0™) = 0(e)

XL = o [AIAS A= A2)As+A0) = ATAZ (A1 — A5) (A2 + As)
F NG A= A+ A3) = AZA (A5~ A) (A1 +A2)
—(ATAZ = A3A3) (A1~ A) (A2 A5)]

s® =111 x=1 1213J
- L]

05 = A doAsda(A1—Ay)
0= 0(234))
FEL) = a®[A1A23A4(A1 — A2 — A3+ 14)]

1 1]4]
84 = I x10=1; 2
L] 3]

6(110) = A1A2A304(A 1 — A (A1 — A3)(A2— A3)
(9(4(10))=(9(e)
KOLe) = @ " [A1A2h3 240y — Aa)Ay — AsWAy — Ay — Az +A4)]

Example 5:

Consider a skeleton of D, -symmetry with four ligand sites, e.g. of the allene type
as shown in Fig. 1. Since 0, = 2 we choose N = 6. The diagrams 89" of the half
orders hY arising from $HF} are arranged in Fig. 5 according to the relation defined.

The components of a chirality function derived via the first “N&éherungsver-
fahren” according to (48) with P, =0(/+(12)(34)+(13)(24)+(14)(23)—
(12)—-(34)—(1324)—(1423))

are given by:

=TT, m=1;
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3[D1 7@1
SFZ ]E
b(j) b:s)

Fig. 5. The half orders b$’ and b for a skeleton of D, ;-symmetry as shown in Fig. 1. The numbers on
the left side of the diagrams 8¢ indicate the superscript w, the numbers on the right side the
dimensions g, of the §°”. » equals the number of boxes of each diagram

;)(13) = )\1)\2
0() = 0(e)
)?(3)(Le) = 01(3)[()\1 =A)(A3— /\4)]

85 = ], xs=1; 112]

5L = A dzAs(A1—As3)
0= 0((23))
XOL)=a®lA1—12) (A= A)(A 12— A3A4)]

8V=11, x=1;

07 = A1AsA3(A 1~ A2) (A1 — A3)(As— A3)
01"y = 0(c)
XL = aPIAIRZ (A= A2) (3= Aa) = ATAT (A — A3) (A2 — M)
FAIAGT AL~ A)(A2—A3) +AAT (A1~ ) (A2 — A3)
— A5 A= A3)(A2—A) +AZAT (A1 — A2) (A3 —A4)]

112
89 = , xg=1; 32

5P = A1A24344(01 — A3) (A2~ Ay)
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O(2) = 0((23))
FOL)= a®[A1A22304(A1 = A2) (A3~ A,)]

09 = A1 A2AsA4(A 1 — A2) (A1 — A3} (A1 — A)A2— A3)(A2— Aa)(Az— As)
0@6$”) = 0(e)
i(lo)(Le) = a(w)[/\l/\z)\s)u()u —A2)A2=A3) A3 —=AD) A=A Ag—A2)(As—A3)]

Conclusion and Final Remarks

Taking into account the principle of qualitative supercompleteness as well as
physically compelling requirements the chirality functions derived appear to differ
from C-chirality functions in some important points:

a)

b)

By means of chirality functions derived via (46), the components of which can
be interpreted as interaction terms (see also [4,5,7]), all the interactions
within and/or between ligands and skeleton for a given molecular class are
included. Resulting from the basic model, i.e. assuming a molecule to consist of
a skeleton and ligands attached to its skeletal sites, a decomposition into
interactions within ligands and between ligands and skeleton cannot be
performed. It follows that — provided the basic model of decomposing a
molecule into skeleton and ligands is “true” - the correct description of a
chirality observation is ensured on principle.

Any SC-chirality function — hence already a function with Y z; components
derived from the smallest diagrams yf\‘}’)":)e $&, - suffices to yield m linearly
independent chirality functions for any choice of m molecules out of m
enantiomeric pairs. Therefore systematical dependencies regarding non-
racemic mixtures of non-isomers are excluded according to the requirement of
qualitative supercompleteness“.

¢) With the intention of describing chiroptical properties of molecules which.

belong to a given molecular class, any relevant situation exhibits the number of
ligand kinds N as large as possible ~ confined only by chemical facts and
certainly much larger than n. SC-chiralty functions are appropriate to describe
this situation, since they are not subject to an upper limit of N. Furthermore it
must be emphasized that in connection with the cancellation of the upper limit

13 We are quite pleased to find C. A. Mead having become a comrade-in-arms in matters of qualitative
supercompleteness. In his paper submitted to “Theoretica Chimica Acta” he shares our opinion —
although this may be a bit hidden - namely that C-chirality functions according to [4] are incapable of
describing completely the experimental data. He also makes an effort to derive functions, which we
view as being in fact SC-functions. We want to thank him for leaving a preprint to us.
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SC-chirality functions become independent of the number of ligand kinds.
This independence is warranted by the structure of the functions.

In order to describe experimental data one would now have to fit the ligand
specific parameters A$” (L) and linear combination coefficients alw of the
component x™(L.) on using a chirality function according to the first
“Naherungsverfahren”. Applying a chirality function according to the second
“Néberungsverfahren” it is first of all essential that one finds appropriate
functions &, Thereafter the corresponding fit of ligand parameters has to be
performed.

Normally such a fit should have some of the components x™’(L,) being large,
some small and some zero thus weighting the “interaction components” with
respect to their importance. From this it could be deduced which kind of
interaction dominates the chirality observations regarded.

However, though the chirality functions derived are free from systematical linear
dependencies all the other critical objections expressed in [9] remain. Those
objections are connected with the basic model. The nature of this model —i.e. to
assume a molecule as consisting of a skeleton and of ligands — brings about that
only a few and strongly restricted cases of molecular classes can be treated.

Finally, it is necessary to search by independent methods for the physical content
to be reconciled with the propositions deduced from consistencies or inconsisten-
cies of chirality functions.

As the most important results we consider the fact that qualitative supercom-
pleteness combined with physical reasoning provides chirality functions including
all the interactions within ligands and/or between ligands and skeleton for a
molecular class. These chirality functions are also the most general ones available.
Thus from both a mathematical and a physical point of view qualitatively super-
complete chirality functions prove more adequate for describing the chiroptical
properties of molecules belonging to a given skeletal class.

Appendix

A. Qualitatively Supercomplete Minimum Set-Ups

Pursuing the point to derive a qualitatively supercomplete chirality function ¢(L)
it is to be seen that there results a principal difference with respect to the
C-concept. Within the scope of the C-concept a qualitatively complete chirality
function consists of components each of which transforms according to an
irreducible representation ' of the &,. The analogous procedure cannot be
applied within the SC-concept, because a component of a chirality function which
transforms according to a T'W of Gy usually depends on all N ligands. Thus a
chirality function consisting of such components represents a chirality function for
a mixture. A chirality function

H(L.) = d(LJLy) (A1)
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for the molecule, however, may depend explicitly only on the n ligands of the
proper skeletal sites (the symbols of which form the vector L.). This fact leads us to
the solution of the problem. We have to set up functions depending only on L. and
to extend their argument formally by L according to Eq. (Al). This formal
extension followed by a permutation s of ligands between L. and L; leads to the
chirality function of a non-isomer sL = a[LelLf] of L.:

(L) =(Le|L) = (L) > $(sL).

If we replace s by an element £ of the group algebra of the Sy, i.e. an ensemble
operator, we get the chirality function ¢ (4L) for the mixture 4L being generally a
mixture of non-isomers.

As a qualitatively complete chirality function induces every irreducible represen-
tation T of &, z, times [4] a qualitatively supercomplete chirality function must
induce every irreducible representation T of ©p x,, times. In order to derive a
qualitatively supercomplete ¢(L) we make use of some kind of ‘“Niherungsver-
fahren”. Thus a ‘“‘Naherungsansatz” to ¢ (L) is denoted by y(L). However, for the
moment we do not need to specify the kind of ‘“Niherungsverfahren” and
“Niherungsansatz”. It suffices to state that within a “Nédherungsverfahren”
functions (L) have to be set up to derive x(L).

Disregarding as well the principle of greatest possible generality within the given
restrictions of the “Niherungsverfahren” as the physical considerations according
to Sect. 7 qualitatively supercomplete chirality functions appear to be of a much
simpler form than the ones of Eq. (46) or (48). The following considerations are
confined to N = n + 0,5, because chirality functions y(L) do not exhibit depen-
dence on N in this case, as stated in Sect. 7. Now let us discuss a chirality function
required to induce a certain I’ % and denote it by x™’(L). This requirement causes
both x™(L) and the corresponding set up »™(L) to adopt definite properties,
which will be examined in the following. Note that these properties are derived
from the formal conditions of qualitative supercompleteness and let us term them
formal properties. They are not at all connected with the properties that arise from
a “Niherungsverfahren”. It rather is essential to know the formal properties in
order to specify some ‘“Niherungsansatz”.

Let us assume o™(L) to depend explicitty on »' arguments, w™’

(s bflysrs ... » Iv). This ©™(L) can be got from a &™(L,)=
o™ (ly, ..., 1,) by formal extension. From (A1) it follows that both the set up
™ (L) to a chirality function and & (L,,) may depend just on ligands attached
to the proper skeletal sites, thus »'=<n. Given the condition that o™ (L,) is
intended to induce the irreducible representation rﬁ;” of the &,y if extended
formally, a lower limit of »' emerges. 0™, ..., 1, oty ooy lN§ obtained by
formal extension of & ™ (L, is totally symmetric with respect to arguments it
depends on just formally — i.e., the arguments »'+1,..., N. Consequently,
w(“’)(ll, ey Lo|lea, - - o, Iny) can only induce such representations T of ©n, the
diagrams 'yﬁir”) of which can be filled with indices 1, ..., N without repetition of
two of the indices ' +1, ..., N in the same column. That is possible, if, and only
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if, the number N — 2’ does not exceed the number of columns of y~’. Since the

number of columns equals the length of the first row 05", it follows N — »' < 0{"’
or N—0% <. We have denoted the number N —0%*’ of boxes of yg}“) not

situated in the first row by » for every w. It holds
v=v'=n. (A2)

Therefore in order to induce I'{y’, a function has to contain components depend-

ing on v ligands at least. Furthermore these components must not be sums of
terms depending on fewer than v ligands exclusively. (To verify this one only
needs to perform the induction separately for each term.) A special kind of
functions fulfilling these conditions are functions consisting exclusively of terms
depending on exactly v ligands. We call such functions &’ (L,) as well as the
extended functions 0™ (L) =™, . . ., l,,]l,,+1, ..+ In) v-ligands functions. A
v-ligands function ™ (L,) can induce 'Y only if it contains a non-vanishing
A(,‘”)-component o™ (L,)=P"&™ (L,); this follows from the fact that an outer
product of the form ASQTH.,, contains T'Y if, and only if, w'=w. A is
characterized by a diagram 8", which is specified by the property that each of its
columns is shorter by one box than the corresponding column of Y. P s the
character projector onto ALY,

Let us now present a theorem answering the question, which representations
FE\‘}“) such a v-ligands function induces besides 'Y, and how often it induces a
representation.

Theorem A1: Let T’ be a representation characterized by the property that each
column of its diagram & is of equal length or longer by one box than the
corresponding column of 8%”. Then the A%”-component ¢ (L,) of a v-ligands
function 6" (L,) induces, if extended formally to &™ (1, ..., LlLa1, ..., Iy),
each irreducible representation I't” as many times as it induces A

The diagrams y%~ with the properties cited above form a TU-half order denoted
by (U 75\‘}’) represents the smallest element of 2%, There may exist elements
yﬁ\',”) € 221 which do not appear in any @(,Rz, i.e. x,,=0. On the other hand QU
contains every yﬁff’, X, # 0, with yﬁy” =) yg\‘}’). If w=w}¥, the half order 8[,’1"\}'
becomes identical with § 7

=92 (A3)

Since only the A”-component of a »-ligands function induces I'? it follows from

theorem A1: A v-ligands function inducing I'y’ m,, times induces each "%, given
YO o y&, m,, times at least. Other components of the »-ligands function may

induce T'Y”, but not .

Proof of theorem A1: A diagram y%;” can be obtained from §$* by adding N —-»
boxes in such a way, that one box at most is put below each column (the remaining
boxes just extend the first row). Let us assign a standard tableau yg\‘,‘;') — cor-
responding to I'%” - to each standard tableau 8% of A, i = 1,..., q. Thereby
the indices v +1, ..., N have to be filled into the boxes added in an appropriate
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way. Since there exist many fillings, we choose an arbitrary one retaining it for all
i=1,...,q, Thus the indices v+1,..., N are filled into the ¢, standard
tableaux in the same manner. The Young operators x%§ of I'%’, which are
assigned to #{" of A", can be decomposed according to

N =Y E+ R (A4

9% is the sum of all permutations exchanging the L1, - . - , Iy arguments just within
themselves and only within each row of y% . Since none of the columns of y3y’
contains two of the arguments .1, . . ., I, theitem Mg =gy of (Ad)is an
algebraic sum of permutations exchanging arguments only within /y, ..., [, and
within /41, ..., Ix. On the contrary 2 consists of exclusively of permutations
interchanging arguments betweenly, ..., 1, and Ly+1, - . ., In. The permutation o,
Wthh transforms &, W) into 87, changes y ) into 'yN,' as well. Furthermore
0(oy"') commutes w1th %. By applying O(oy" ) from the right it results

NS =Y+ Ry (AS)
with &, = %0(c;") consisting likewise of permutations interchanging arguments
between I, ..., L and 1,4, ..., Ix. The function @™ (L,) = 2 e™(L,) may be

extended formally to w(“’)(L) ?/’(W)w(ll,.. l[l,,+1,.. , Ix). It holds that
Fo™(L) = c&™ (L) with a constant ¢ #0." Applymg (A5) to @™(L) we get

NG (L) = ¥ 6 (L) + R1d (L) (A6)

If #™(L)= 6™ (L,) induces A m,, times, there exist m,, linearly independent
bases of the form

[HP6™(L) Y™ (L) ... ¥ 6™(WL)], t=1,...,m,. (A7)
j,t=1,..., m, denotes suitably chosen indices. The linear independence of the
m,, corresponding elements

YPoMw),  ¥RMW),. .., ¥ a™L) (A8)

is equivalent to the linear independence of the m,, bases (A7). Now we substitute j
of (A6) by the indices j=ji,...,Jm, according to (A8), multiply by linear
combination coefficients 8; and sum

¥ 0D =c Y BT+ T G D). (A9)

Let us abbreviate the first sum of the right-hand side by (L), the second one by
p(L)

o) = z B S(L), "(L)zg BF1"(L).

* The decomposition can be performed by applying the procedure described in Ref. [19], p 28,
(N —v) times.

15 Since % contains exactly (N — v)! permutations exchanging only the formal arguments within rows
of I’E\'}") ¢ takes the value (N—v)!. However, this value is of no importance.
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As & (L) depends explicitly on I, .. ., I, ligands, being a v-ligands function,
application of R, causes each item of p(L) to depend on one of the /,.q,...,In
ligands at least. On the other hand, (L) only includes items depending on
i, ..., 1, ligands. Thus no item out of either sum is able to compensate one out of
the other sum. Because of the linear independence of @fj‘f SUNL), t=1,. .., m,
it holds 4(L) # 0 unless all B, = 0. It follows for the left-hand side of (A9)

Y B 6™ (L) # 0.

t=1
Consequently, the N@f}:’ "6™(L), t=1, ..., m, are linearly independent. From
this the linear independence of the m,, bases

[NV S™(L) NSO ™M(L) - MW, t=1,...,m,

of m, representation spaces of I'ly” follows. Therewith it is established that
’ cﬁ(W)(L) induces T m,, times, thus proving Theorem Al.

In the limiting case N=n Theorem Al turns to a statement concerning the
induction of representations I'\’ of the &,: The Af,w)-component é(w)(Le)=
PV, ..., L1, ..., 1,) derived from a »-ligands function &™X(L,)

induces each irreducible component ' of the outer product AYRTY, as many
~ times as it induces A,

According to Theorem Al we imply a minimum set-up for an irreducible
representation I'Y’ — containing T, x,, times - to be given by a chirality function
that induces 'y’ x,, times and consists of components depending on a minimum
number of ligands. Obviously such a minimum set-up can be obtained via a
v-ligands function &™(L,), which induces the corresponding ALY x,, times.
Thereby it follows from Theorem A1 that a minimum set up & ™(L) according to
'Y and derived from a‘;(w)(L,,) induces not only I ¥ but also all Iy with
753’) > y%” x,, times.

Consequently the minimum set-up of a molecular chirality function Fmin(L.) has
to consist of terms ™7 (L.) each of which induces ry? X,x = Z7 times:

Kmin(Le) =3 X (Lo). (A10)

Because of Theorem A1 and Eq. (A3)aT'Y is induced by TM(LY) if, and only if,
y}',”) e.@f{fv. As in this case ,?(w *(L.) induces rYy z; times Xmin(Le) induces T’

Z_zfzxw,

v <o
times, cf. Eq. (4}). ;Fhe components Z(Wag)(Le) of the minimum set up ¥min(L.) are
obtained from &™ ”(L,) or ¢ ?(L), respectively. The P eh? equal the v
in any case *from whjch*it follows »=n, L, = L.. Thus it can be seen that the
set-ups o™ (L,)=6" *(L.) from which the minimum set-up of a molecular
chirality function can be obtained, represent n-ligands functions, v = n. Addi-
tionally, all n-ligands functions giving an appropriate set-up to ¥mia(L.) are
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exhausted by the*a';(w ;)(Le) of the AYP. Any other n-ligands function &™(L,) not
containing a AY"”-component would be annihilated via the projection onto the
o-chirality representation I',; to verify this remember that outer products of the
form I’ ®TY contain T, only, if r = 7. If »<n an analogous statement can be
deduced. Taking into accountallthe »"™(L,) with a fixed value » according to the
A or T with x,, # 0, there do not exist other & "(L,) that can contribute to
the chirality function.

B. Qualitatively Supercomplete Chirality Functions

Within the preceding appendix we have dealt with qualitatively supercomplete
minimum set-ups of a chirality function and with minimum set-ups for. a definite
irreducible representation 'Y Nevertheless, for the construction of qualitatively
supercomplete chirality functions we shall not confine ourselves to the minimum
set-up. It rather seems suggestive to regard both the principle of greatest possible
generality and physical considerations (see Sect. 7). On doing so we find it
appropriate to take into account components x™(L) differing for the T'%’. The
corresponding set-ups ®™(L) are those functions that form the minimum set-ups
for the [Y" and can be obtained via the v-ligands functions &*(L,) inducing the
appropriate A% x, times. We make use of these minimum set-ups &™(L,) for
X(W)(L), since all the &"(L,), v’ > v, have already been taken into account via the
x™(L), with y%” P ¥ .

Therefore we set up a qualitatively supercomplete Naherungsansatz x(L) as the
sum

xL)= ¥ x"™(L) (B1)

Aw=0

where the component x(w)(L) induces the representation 'Y in Gy x,, times.

Having deduced the formal properties of the d‘)(w)(L)~= (L) = S (L,) we
may omit the extension to L and make use of Eq. (A1) $(L.)= ¢(LJLy). Eq. (B1)
now turns to

x(L)=%(Lo= T x™(Lo). (B2)

w
Xw=0

According to the second Naherungsverfahren we set up for $™(L.) a v-ligands
function 7o” (I, . . . , 1,).'® The number » of ligands equals the number of boxes of
yﬁ&”) not situated in the first row (compare Appendix A and {4], p. 260); it holds
v < n. Furthermore 152‘”) (L,), where L, =[ly, . .., 1], must induce the irreducible

representation AW of the &,, the diagram 8™ of which arises from Y& by

Hw)

removing the first line. The number m,, indicates how many times 7, (L,) induces

16 The following considerations also refer to the first Ndherungsverfahren, since it can be considered
as a special case of the second one.
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Af,w). It cannot be greater than the dimension g, of A% so that we have
1<m, <qy- (B3)

Because a qualitatively supercomplete chirality function has to induce T'Sy x,,
times we take s,, different functions '7—2") (L,),p=1,...,s,,of the same structure
(see [4], p- 253) obeying the condition that the s,, induced representation spaces
are linearly independent. Evidently it must hold

S,y = Xope (B4)

As the diagrams 8% play an important rdle we define for each r a half order ¥

consisting of those 5% which can be obtained from diagrams of .‘{) s N=n+o?,
by removing the first row. The relation is transferred from S Figs. 4 and 5 show
the 5%, b, bY”, b5 derived from $$. Note that in the case of the skeleton of
Fig.2 b and by’ are [)ff), while b5 and bS are b for the allene skeleton shown
in Fig. 1. A diagram 8% € ' is greater than a diagram 8%, §° < 8¢, if it can
be formed from 8% by removing boxes There exist a smallest and a largest
diagramin §2, the smallest diagram 8¢ P withv=n being identical with v, The
largest diagram 807 with v =n—0{ is also got from y?’ by removing the first
TOW.

Theorem B1: The half order |’ contains exactly those diagrams 6" from which

yﬁf) can be built by adding n — v boxes without repetition in the same column.

Proof: v arlses from v by adding one box to each column at most. Therefore a
column of v is either of the same length as the corresponding column of v’ or

longer by one box. It follows that a column of the diagram 80"’ which one gets
from v’ by removing the first row is either shorter by one box than the
corresponding column of ¥¥ or is of the same length. Therefore v can be

obtained from 5% by adding one box to each column at most.

As defined in Sect. 5, ¢,,=1 if y(w) $, and t..1 =0, otherwise. Since the

condition y&’ € % is equivalent to 8 e §Y it holds
_ {1 if 8, € by, (B5)
AR VR Nl N

The outer product ALY @I, induced in S,, by 79 (L,) contains an irreducible
representation I' once if its diagram < can be got from 8 by adding n—»
boxes without repetition in the same column. All the other I'{" 3 are not contained.
From Theorem B1 it follows that this is the case if, and only if, 5" € bY. Using
Eq. (B5) we get

AOTL, =T b2, (B6)
As I'? contains I', z, times AYRTY | contains r,

(Y b2 = X B7)
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times. Comparison with Eq. (36) shows that AS”®T'S”, contains T’ as many times
as T contains I,

a) Second Niherungsverfahren
We choose for each 'Y’ with x,, # 0 s,, functions
FOUL) =77 (L) =7"(L),  p=1,...,5, (B8)

of the same structure being sufficiently general to induce AY gq,, times, ie.
m,, = q,- The outer products AMRTY ) and AW ®TY., are also induced Gw
times by the TE,W) of (B8). 'Y, contained once in AMRTY. ,isinduced g,, times,
too. Let ?yf,w o, j=1,...,q,, be the Young operators of the EZQ-type [14] or the
Young units, respectively, related to the g, standard tableaux of the AW of &,
[14]". Then the functions

YPEL), YT (L), YT (L) (BY)

form for each pair of o,j (¢=1,...,5,; j=1,...,q,) a base for A?. The s,4q,,
bases are linearly independent. The functions

O YWEAL,), i=1,...,49,; ¢€G,, givenp,j, (B10)*®

obtained by extension of the argument and by admitting all permutations ¢ of
L, ..., 1, form a representation space of AYRTrY .. The ¥ f,w ) can be expressed
by @f,w ) = @’(oﬁf)@%)@(a;}) where ¥y is an arbitrary Young operator of the
A" which needs not to correspond to a standard tableau. o =0y is the
permutation of the ©, which transforms the standard tableau i into the tableau k.
So the functions of (B10) can be written as

0¥ 0(o1)7," (L),  9€Cn | (B11)

As Af,’”@l“f,ll,, contains I, x,, times there are x,, linearly independent chirality
functions among

PO YR O(op)7S (L), o€ G (B12)

We pick out x,, such functions from (B12) by a suitable choice of x,, permutations
oM y=1,...,x,, of S,. This choice is independent of p and j. It follows that the

most general set-up for a chirality function within the present considerations is

S 9y Xw
AL)=P, T Y ¥ % aSloe ¥R 007 (Le) (B13)

wp=1j=1u=1

where o) are coefficients of linear combination. As in [4], p. 261, we let s,
puj p

approach infinity and suppose the 73 (L.) to form a complete system of functions.

17 A Young unit @, is defined by ¥y, =0(c5")¥;=0(0;")2;2,=30(0;")2,=3,20(cy")=
@,-ﬁ(a,-',—l ), where o; is that permutation which transforms the Young tableau j into the Young tableau
i. For the definition of 2;, 9; see Sect. 7.

8 0(s) means the operator induced in the function space by the permutation se &,, (see Sect. 3).
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Thus the sum
W) T (W) a(w)
~ w) ~(w
nut; (Le) = Z apuij (Le) (B14)
p=1

is a general function of the same structure as the 70" (L.). Making use of (B14) we
get
Gy X,
X(Le)=P X _Zl 21 O Y& 0(0) 7 (Le). (B15)
wj=1u=
Since all @(ajk)ﬁf,'}“) (Le)= ﬁf,‘}’)(o-kjLe) depend on the same v ligands /3, . . ., [, we
can perform the summation over j obtaining again a function

5 (L= ¥ 75 (ol B16
@, (Le) ’Zl N uj (Uk] e) ( )
i=
of the chosen structure. Inserting (B16) into (B15) we get the definite form of the
set-up according to the second Niherungsverfahren:

RL)=2,F ¥ 06)W0e (L), (B17)
1

wu=

Recalling (B2), a component §"™(L,) is given by

KL= L 06V (L), (B18)

b) First Ndherungsverfahren

The set-up of a qualitatively supercomplete chirality function according to the first
Niherungsverfahren consists of the most general polynomial of lowest degree
which exhibits the necessary transformation behavior. The polynomials of lowest
degree induce an irreducible representation I't’ of S5 once (4], p. 284). The
corresponding representation space can be spanned by the monomials

U, (v aL) = 0(s M, (v L) (B19)

which arise from putting variables of zeroth power into the first row of y&‘}’),

variables of first power into the second row, etc. By the subscript p we distinguish
between the different parameter sets that we have to deal with concerning the first
Néherungsverfahren. So f$*’(L) may be understood as a shorthand for

F @)= fIAS (), 2(L), ..., A (0)]

where A5” () is the pth of those parameters of the ligand /; which are used in
connexion with the representation I'SY’. The functions (B19) can be defined by

(w) ¢
s o)

Ow;L)=Y Y &I (B20)

i=1 j=o{") +1
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This definition corresponds to a standard tableau with the ligands filled in row by
row in ascending order'’ of their index J. The monomials corresponding to the
other tableaux can be obtained by means of (B19). o{* are the partial sums

oM =v+ . +™ of the lengths »™ of the rows of y%’, 05" =0 by
deﬁmtlon ﬂ(W) is the length of the first column of y&’ which equals the number of

rows. We denote by M the factors

(w)

MM =5 PO (B21)
Jj= ofw)1+1

of ¢,(y§”; L) in which every parameter appears with the same exponent i — 1.
Therefore M{™ is a basis of the totally symmetric irreducible representation I'\) of

the symmetric group ©,, where v( =0y — 0"} is the length of the ith row of
Yy, Asall N1/ (v 10871 . w> 1Y monomials, which one gets from ¢, (y%’; L)
by permuting all arguments are d1fferent it follows that

Y (v L) = MM - MU (B22)
induces the whole outer product

DY) =TT e - ®r< G, (B23)
once.

The number v of boxes of the dlagram 8(w) obtained from y%’ by removing the

first row is equal to v =5+ + -« + <w> therefore v =0{"’ = N—v. As the
outer product
CAMQTY (B24)

plays the basic role in our consideration we modify (B22) as well as (B23). For this
purpose we define

V(805 L,)= M§" MY - - - MU, (B25)
It holds
V(60" L) = T5" (L), (89”5 L) (B26)

where the monomial %(6(‘”’ L,) is obtained analogously to (B20) by putting
variables of zeroth power into the first row of 80", etc. As the exponent of a
variable in 8¢ is one less than the exponent of the same variable in y(w) there
arises the totally symmetric factor

TO (L) = A5 U=y + DAS Unmsra) - - - ASY (D). (B27)

It follows that ‘11',‘,(85,”) ; L,)in the same way as ¢, (8 ). 1), once induces in &, the
outer product

DY) =TI - @I,

V(M)'.

(B28)

®  We now label the ligands on which ¢P(y‘“’) L) does not depend by the indices 1,..., o
wherteby 0{*’ = N — v. The remaining ligands which form the vector L, are then numbered according

Lu =’[‘lN-v+ls LR lN]
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Since it follows from the reduction rule of the outer product that D (8 )y contains
AY once, both %(85,”) ;L)and P, (6$; L,) induce A once. This agrees with
the fact that d/,,(SE,W) ; L,) is a polynomial of lowest degree with respect to AL,
Inserting (B25), (B28) into (B22) and (B23), respectively, gives

G, (Y L)=¥,(6%; L,) . MY, (B29)
D(Y)=DEY)RTE,. (B30)

The factor I'\Y, of (B30) is spanned by the monomial M ™ which does not
depend on ligand parameters, i.e. is a constant. As a qualitatively supercomplete
chirality function must induce I'Sy’ we have to find those irreducible components
AP of D(8$) the outer product of which AP @IS, with I'Y_, contains 'Sy, It
follows that a column of the diagram 8% of such a representation must be of the

same length as the corresponding column of y&’ or by one box shorter. Since the

difference N — v = v{"’ between the number N of boxes of y%’ and the number »

of boxes of 8% is equal to the number of columns of yg\‘}’) this condition can be
fulfilled only if every column of 8¢ is by one box shorter than the corresponding
column of y%’. There exists only one 8% of this property, namely 5 = §).
Therefore the only A% which furnishes T'” on outer multiplication by e, is
AP =A™, So we arrive at the outer product AVRTE., of (B24) the factor AL
of which is contained once in D(8%"), as follows from the reduction rule of the
outer product. (This follows also from the fact that y,(6%"; L,), ¥,(6%”;L,)

induce A once.)

Comparing this with (B29), (B30) it is desirable to separate the component
transforming according to Af,‘:) from \PP(SE,W) ; L,). This means that ‘PP(SE,W); L)
plays the role of the function %ﬁ,‘”) (L,) of (B8) with the exception that now m,, = 1.

FL) =Y, L,)=TY (L)y,(6; L,). (B31)

By means of the Young operators ¥ of the 92-type and Young units #$” of the
standard tableaux of A" we get a basis analogous to (B9)

(@077 (L) ¥FOL) - Vi (L) (B32)
of AT”. A basis element ¥4 70" (L,) may be expressed by
Y7 (L) = 0(0) Y75 (L,) (B33)

where oy; is that permutation which transforms the standard tableau i into the
standard tableau k. It holds

YWy,(687; L) =5 (L,) (B34)

H(w)

with 6,;°(L,) as the product of the Vandermonde determinants corresponding to
the columns of the kth standard tableau of A™ ([4], p- 283). Taking into account
the total symmetry of Tf,w) (L,) we get from (B31), (B34)

YT, (L,) = TS (L)% (L,). (B35)

On the right-hand side of (B35) there appears the product of the Vandermonde
determinants for the standard tableau k multiplied by the product of all
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parameters of L,. We abbreviate this expression by

SWL) =TS (L,)65 (L) (B36)

and can write
Y5, = S5 (L.). (B37)
Inserted into (B33) this gives for the basis elements

YP 7 (L,) = 0(0k)5 (Ly)- (B38)
As 5}? (L,)#0 we get for every k=1,...,q, 2 basis. Because 75" (L,)=
W,(8 ™). 1.,) induces AS” only once every k gives the same basis. Therefore we
can choose an arbitrary k. As m,, =1, we set s, = x,, which fulfills (B4). This
means that we use x,, different parameter sets. The functions

0500 (Le), €S, givenp, k (B39)

obtained from (B38) by extending the argument and by admitting all permu-
tations of the ©, form a representation space of A QT This representation
space remains the same even in the case of the Young tableau k being non-
standard. Therefore we drop the condition that k must be an index assigned to a
standard tableau. The outer product AMRTP, contains T « Xw times (see Eq.

(B7)). Hence there are x,, linearly independent chirality functions among
PO@GR (L),  a€C,. (B40)

These can be selected by a suitable choice of x, permutations ¢3" € &,, u=
1,...,x, As we take the same k for all p this choice is independent of p.
Therefore the general set-up for a qualitatively supercomplete chirality function
according to the first Naherungsverfahren takes the form

FL)=P 2 ¥ L ap’06)5 (L) (B41)
wp=1u=
where af,‘,j) are coefficients of linear combination. The components of x(L.) are

now given by

L=, Y Y a0 (L) (B42)

p=1u=1
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